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. The Foundations of Re~ction Rate Theory and 
Some Recent Applications 

HENRY EYRING, Universilyof Utah, and BRUNO J. ZWOLI SKI, * 
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THOUGH philosophers for centuries 
were conscious of the importance 
of the universal variable time in the 
interpretation of nature, it was 
barely a century ago that this factor 
was properly taken into consider­
ation in a series of physical measure­
ments on a reacting system, thus 
marking the birth of the field of 
chemicalkinetics. Forty years passed 
by without any very significant 
contributions to the development of 
kinetics. This period came to a 
close in 1889, when Arrhenius (1) laid 
the foundation for the collision 
theory of chemical ' reactions, and 
set the scene for the modern develop­
ment of rate theory. He proposed 
that an equilibrium existed between 
normal and activated molecules, 
and the variation of the specific rate 
of reaction with temperature could 
be expressed by the .formula 

k = Ae-E / RT (1) 

This equation correctly represents 
the temperature dependence not 
only of most chemical reactions, but 
also of certain physical processes. 

McC. Lewis (2), Hinshelwood (3) 
andotherssetthe constantA inArrhe­
nius' reaction isochore for bimolecu­
lar reactions equal to the number of 
collisions. This served as an excel­
lent guide in correlating and further­
ing our knowledge of chemical 
changes. Wherever it was found 
possible to consider the reacting 
molecules as hard spherical particles 
the collision theory admirably inter­
preted the experimental data. As 
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further data were accumulated on 
reacting systems involving more 
complex molecules it was found 
necessary to introduce empirical 
probability or steric factors into the 
collision-theory expressions for the 
specific rate of reaction to obtain 
agreement with exp~riment. All 
efforts expended on improving the 
collision theory only further empha­
sized its limitations and the need 
that existed for a new approach to 
the problem of reaction rates. 

A new attack on the problem of 
the calculation of rates of chemical 
reactions from first principles utiliz­
ing the fundamental properties and 
molecular constants of the reacting 
molecules was afforded by the devel­
opment of quantum mechanics. In 
1928, F. London (4) indicated how 
the methods of quantum mechanics 
could be employed in calcul~ting 
the energy of activation of chemical 
reactions which are termed "aaia': 
batic," in the sense that they do not 
involve electronic transitions and 
occur on the same potential energy 
surface'. He developed an equation 
based on certain approximations 
showing how the potential energy of 
a system of three or four atoms with 
s electrons varied with interatomic 
distances. This theoretical treat­
ment of the fundamental quantity, 
the energy of activation, provided 
new impetus to an attack on the 
rates of chemical changes. The use­
fulness of this equation in construct­
ing potential energy surfaces for the 
interpretation of chemical reactions 
was developed and extended by H. 
Eyring and M. Polanyi (5). Since 
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the J Jondon equation even in'its ap­
proximate form inyolves quantities . 
which can be completely evaluated 
only for the simplest system con­
sisting of hydrogen atoms, they con­
sidered approximate solutions which 
led to the" semi-empirical" method 
for the calculation of the energ.y of 
activation. Fundamental contribu­
tions came from many sources on the 
calculation of the absolute reaction 
rates which are sUmmarized in a 
recent text (6). A general formula­
tioJl of the theory of absolute rates 
of reaction dealing with the calcula­
tion of the frequency factor and 
applicable to any rate process was 
given by H. Eyring in 1935 (7). A 
similar treatment was presented by 
M. Polanyi and M. G. Evans (8) 
which is sometimes referred to as 
the transition state method. Both 
extended an earlier paper of Pelzer 
and Wigner (9). ;Briefly, we present 
the essential points and assumptions 
of the theory of absolute rates of 
reaction: 

A chemical reaction and many 
physical changes with time are 
characterized by an initial configu­
ration which by a: continuous change 
of coordinates passes into a final 
configuration.. For each process, 
there is an intermediate or critical 
configuration called the" activated 
complex" or "transition state," 
situated at the highest point of the 
most favorable reaction path on the 
potential energy surface. If a mole­
cule reaches this critical point in a 
certain region of phase space, there 
is a high probability that a reaction 
will occur. The activated configu­
ration is like an ordinary molecule 
with the usual thermodynamic prop­
erties ex:cept that it possesses an 
extra degree of translational freedom 
along the direction of the reaction 
coordinate. By assuming an equilib-
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rium to exist between the initial 
and the activated state, the specific 
rate of a reaction can be determined 
by calculating the concentration of 
the activated complexes and their 
rate of passage across the potential 
barrier or saddle point of the poten­
tial energy surface, by .using statisti­
cal methods. 

Consider a process in which the 
rate is determined by the passage 
over a potential barrier and quan­
tum-mechanical tunneling effects 
can be disregarded, then 

Rate of reaction v = KG' =~ (2) . 
where C' = is the concentration of 
activated complexes per unit volume 
and the ratio v/o is the mean velocity 
of crossing in one direction divided 
by a length oof the activated state. 
Thus v/o represents the frequency 
of emptying the length of path 0 of . 
activated complexes. The factor 
K, the transmission coefficient, is 
the factor introduced to take care of 
the possibility that not all the acti­
vated complexes reach the final state. 
For most reactions · it is sensibly 
equal to unity. Treating the acti­
vated complexes as normal mole­
cules by . replacing the metastable 
degrees of . vibrational freedom by 
translational motion along the reac­
tion coordinate, we find 

C'= = G= (2'11m:kT)1/, Ii. 

In addition, the mean velocity v = 
(kT /21f"m =)';', so that Eq. (2) be-
comes 

kT 
v = KG= h' (3) 

Accepting the hypothesis of an· 
equilibrium between the initial re­
actants A and B and the activated 
state, we have for the velocity of a 
bimolecular reaction 
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I(CACB k[K=, 

and in general we obtain for the 
specific reaction rate of any order; 

k' = I( kT K '" (4) 
h 

Applying a thermodynamic formu­
lation, by relating the constant K'" 
to I).F=, I).H'" and I).S=, the standard 
free-energy, heat-content and en­
tropy changes for formation of the 
activated state, we may express 
Eq. (4) 

kT 
= "TelJ.S"'/Re-lJ.H./RT, (5) 

In terms of partition functions, Eq. 
(4) reads 

kT F""" 
k' = I( - -- r E./RT (6) 

h FAFB ' 

where Eo is the energy of activation 
at the absolute zero temperature. 

If we are concerned with non­
conservative systems, the Eq. (6) is 
readily extended to include the effect 
of an applied external force. Con- , 
sider an applied force to have a 
component! along the reaction path. 
If this force acts across a symmetri­
cal barrier through a distance ),,/2 
from the normal to the activated 
state, the free energy of activation 
I).F· in the absence of the external 
force will be decreased by an amount 
()"/2). The specific rate of the for­
ward reaction in the presence of the 
applied force will be 

MI= _ N/A 
kT 2 

kl' =" Te- RT 

= koeM2ItT, (7) 

where ko is the specific rate in the 
absence of the external force 'and N 
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is Avogadro's number. Similarly 
for the reverse process, we have 

kb' = koe-/A/2kT, 

giving for the net rate 
(8) 

k' = kl' - kb' = ko(efo./ 2kT - e-/A/2kT) = 

2ko sin h ~~ (9) 

A wide variety of physical processes 
including viscosity, plasticity, dif­
fusion, electrochemical phenomena, 
creep in metals and high polymeric 
substances are readily , interpreted 
by modifications of Eq. (9) (6). 

The Non-Equilibrium Theory of 
Absolute Rates of Reaction 

In the above formulation of a rate 
theory which is applicable to any 
process in which the rearrangement 
of matter involves surmounting a 
potential barrier, the tunneling effect 
was disregarded. Though for the 
majority of chemical reactions which 
do not involve a transfer of electrons 
this effect is negligible, we have to 
take the barrier penetration into 
consideration when dealing with the 
decomposition of N20 or the inver­
sion of ammonia (10). If the poten­
tial barrier is nearly flat, the velocity 
of reaction is corrected for penetra­
tion or tunneling effects by multi­
plying the specific rate ' constant 
by the factor due to Wigner (11), 

(1 - ;l~~)) where lin is the 
imaginary value of the stretching 
vibration along the coordinate of 
decomposition. The leakage effect 
is generally small and can usually be 
neglected without serious error. 
The other point which requires 
further consideration is the appear­
ance of the probability factor 
e-E./RT in the rate expressions, 
where Eo is the difference in the 
residual or zero-point energies of the 
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initial and the activated' state. It 
arises from our basic assnmption 
that an equilibrium exists between 
the normal and the activated states 
which is not disturbed to any extent 
during the course of the rate process. 
The validity of this assumption will 
now be examined as tantamount to a 
complete formulation of the theory 
of absolute rates of reaction. 

The applicability of equilibrium 
theory to chemical ' reactions was 
first suggested by Arrhenius. This 
hypothesis was discussed by Mar­
celin (12), who expressed the opinion 
that for measurable reactions oc­
curring under normal conditions of 
temperature and pressure the as­
sumption is correct. Further dis­
cussions of this matter were given 
by Wynne-Jones and Eyring (13) 
and also by Guggenheim and Weiss 
(14). The equilibrium postulate 
underlies every proposed theory of 
reaction rates. The success of the 
crude collision theory and more so 
of the theory of absolute rates, which 
closely interprets many diversified 
physical phenomena, is strong evi­
dence for the correctness of the equi­
librium hypothesis. All this, how­
ever, is a posteriori evidence that an 
adequate supply of energetic or 
activatetl , molecules is maintained 
during all stages of the reaction, and 
more direct quantitative reasoning 
is desired. Our present knowledge 
of chemical dynamics is not suffi­
ciently advanced to investigate in de­
tail the individual collision processes 
which give rise to an infinite variety 
of energetic molecules and to deter­
mine what fraction of these for­
tuitously propitious collisions deter­
mines the concentration of the acti­
vated state. An ingenious approach 
to this complex problem was made 
by H. A. Kramers (15). To eluci­
date the applicability of the absolute 
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rate theory for calculating ihe ve­
locity of chemical reactions he con­
sidered the effect of Brownian 
motion on the probability of escape 
of a particle (caught in a potential 
well) over a potential barrier. 
Kramers' results indicated that the 
theory of ·absolute rates of reaction 
gives results correct within 10% 
over a wide range of viscosity values. 
In his method of investigation the 
classi0al mechanical diffusion theory 
was employed, so it is of interest to 
take into account the quantized 

. nature of molecular levels. This has 
been done in a recent investigation 
(16) of the non-equilibrium theory of 
absolute rates of reaction, wherein 
results were obtained essentially in 
agreement with Kramers' calcula­
tions. 

Consider reactants passing by a 
series of propitious molecular col­
lisions from a set of energy levels to a 
subsequent set of levels correspond­
ing to the final states of the products. 
It will be assumed that values for 
the specific rates of transition kij 

from level i to level j are known, 
which in principle at least are cal-

. culable from the quantum-mechani­
cal theory of collisions (17). Re­
stricting ourselves to reactions in 
which we can neglect the concentra­
tion changes in all species except A 
and designating the number in the 
ith level by Ai> we have the follow­
ing set of n rate equations 

. dA-
-dt' = L (kjiA; - k.jAi) (10) 

j;&i 

corresponding to the n possible 
. energy' levels of the ' reactants and 
products taken as one. Degenerate 
levels, like other levels, each carry a 
separate subscript. In each equa­
tion of the set (10), the summation 
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extends over all n values except i. 
The solution is readily obtained for 
the set of linear differential equa­
tions with constant coefficients. 

Let us try the solutions A t = B tebl 

where B t is a constant, b is the 
characteristic parameter, and t is the 
time. Substituting in Eq. (10), we 
obtain the simultaneous set of 
homogeneous algebraio equations 

L [k;iB; - (k.; + b)R] = o. (ll) 
j,.. i 

Solving for the B / 8, we have specifi­
cally for the constant B" 

o k21k31 • • . • • •••••••••••• knl 

o ~"k." - L: (k". + b) 
Rl = ~=----,~.,..~j-'---: 

- L:(k" + b)k21' ..... . . k"l 
(12) 

i,..j 

klnk2• - L: (k". + b) 
i,.. j 

Aside from the trivial solution Bl = 
B2 = ... = Bn = 0, a solution for 
non-zero values of the B/s exists 
only if the characteristic determi-

ant , t hatis, the denominator of (12), 
JS set equal to zero. With this equal 
to zero, the n values of t he charac­
t eristic parameter b may be found by 
substituting values for the transit ion 
constants klj and solving the nth 
order determinant. By substituting 
the determined value of the kth root 
bk into Eq. (ll) iIi the usual way, 
one is led to the solutions Bjk = 
GkCjk, where for each j and k one 
obtains a ntimerical value for Cjk, 
and Gk is the same arbitrary con­
stant for all j's. Summing all the 
particular integrals, the general 
solution of (10) is 
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n n 

Ai = L Bikebk' = L GkCikebk' (IS, 
k=l k=l 

In (13) the values of C'k and bk are 
known, and by putting t = 0 and the 
A/s equal to their initial concentra­
tions, the arbitrary constants are 
readily calculated. Each At thus 
becomes a completely determined 
function of time. 

The applicability of the general 
procedure outlined above will be 
shown in a specific case. The follow­
ing simple model was chosen in 
which the initial state was considered 
to consist of levels 1 and 2 and the 
final state of levels 3 and 4, with 4 
designated as the level of lowest 
energy. This case corresponds to 
n = 4 in the general expressions 
given above. The rate equations are 

k.2A3 + k .. A. 
dA 4 
-dt

a 
= k13A, + k.3A2 - Lk,;Aa + k'3A, 

j,..a 
dA. k dt = aAI + ~.A2 + k.,A. -

4 

Lk.;A,. 
j,..4 

(14) 

Proceeding according to the gen­
eral method outlined for the case of 
n levels, the particular solutions are 
assumed to talte the form 

A. = Biebl (i = 1 •.. . • 4) . (15) 

To make possible a solution of the 
characteristic 4th order determinant 
for the parameter b and, subse­
quently, to obt ain values for the 
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constants B10 ... , B4, certain as­
sumptions have to be made with 

.. r~ference to the n(n-l) = 12 reac­
tIOn rate constants and proper values 
chosen to represent their magni­
tudes. If we assume that a mole­
cule in the activated state has the 
same probability. for decomposition 
along the reaction coordinate to any 
level of the final state, then fo~ the 
forward process kI3 = kg and k23 = 
k24• Similarly for the reverse proc­
ess, k41 = k42 and ka2 = kal • If in 
addition we limit ourselves to react­
ing systems of small heats of reac­
tion, so that .the energies of ihe re­
spective molecular levels . in the 
initial and final state are approxi­
mately the same, and combine the 
resulting relations between the kt/s 
~th those based on the first assump­
tIOn, the following set of relations is 
found to exist between the twelve 
specific reaction rate constants of 

. the system: 

kI3 = kI< = ku = k'2 

k23 = k3• = k.4 = k3I 
k l • = k'3; k.I := k" 

The second assumption implies fur­
ther that the transmission coeffi­
cients of the specific rate constants 
with reference to a similar pair of 
transitions, as, for example, k23 or 
k32 or k12 and k43 , are approximately 
equal. On the basis of the above 
assumptions for the k,/s, the charac­
teristic 4th order determinant is 
readily diagonalized to yield expres­
sions for the parameter b in terms of 
the four determining rate constants 
k12, kIS, k2I and k23• Choosing the 
following plausible values for the 
kt/s, 

kI2 = 0.01 k23 = 0.1 
k,I ' = 1 . k13 = 0.001 

the quantities bk and Cjk have been 
calculated and are given in Table 1. 
With the particular integrals of Eq. 
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(15) fully determined, it is only 

TABLE 1 

k Clk C2k C3k C' k 

0 1 0.01 0.01 1 
-1.306 -1 1.437 -1.437 1 
-1.111 1 -1 -1 1 
-6.737 -6.959 6.959 

X 10-3 -1 X 10-3 X 10-31 

necessary to specify the supplemen­
tary conditions when t=O, and 
evaluate the arbitrary constants GI 

.. " G4 to permit us to obtain th~ 
explicit expressions as .to how the 
population in the four levels varies 
with time of reaction. We will then 
be able to compare the \ rates of re­
action under equilibrium and non­
equilibrium conditions. 

Introducing the arbitrary con­
stants, the general solution of our 
simple four-level system is 
Al = Glebl' - G,eb,. + Gseb,t -G.eb,t 
A2 = GI X 10-'ebl' + 1.437G.eb, t -

Gseb,t - 6.959G. X 10-seb,t 
As = GI X 1O-2eblt - 1.437G2eb, . -

Gseb,. + 6.595G. X 10-3eb,t 
A. = GIeb,t + G.eb,t + G3eb3' +G.eb,t 

(16) 

where: bl = 0, . b2 = -1.306, b3 = 
-1.~1~, b4 =-6.737 X 10-3

• By 
specifymg the supplementary initial 
conditions (i. e., when t c= 0) for the 
cases of equilibrium and non-equi­
librium, the arbitrary constants of 
the respective general solutions are 
calculable. Under equilibrium con­
ditions, the equilibrium concentra­
tionsof the various species A t de­
fined as n10 . .. , n4 are 

De-·,/ kT 
ni = 4 (17) ' 

'E e-·;/kT 

j= 1 

where D is the total concentration of 
the molecules A in the system and 
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the statistical weights Wj for all 
levels are taken to be equal. From 
the principle of detailed balance, we 
may write that k jj = kjje-<i./kT 

where Ejl = Ej - Ej, so that Eq. (17) 
is equally well written: 

D n. = -- (i = 1 •.. . • 4) . (18) 

t~ 
j=l kj , 

This represents the supplementary 
conditions for the equilibrium case. 
For the non-equilibrium case, it is 
assumed that the concentration in 
the lowest level of the initial state 
(level 1) is at its equilibrium value 
and the concentrations of the species 
A in all the remaining levels of the 
initial and final states are zero; thus 
the supplementary conditions for 
the chosen non-equilibrium case 
when t = 0 are that Al = D / 2.02 .and 
A2=A3=A4=0. The value for Al 
was obtained by substituting the 
chosen values for the rate constants 
klj into Eq. (18), the expression for 
the equilibrium concentration. The 
respective arbitrary constants for 
the two cases considered have peen 
calculated and are summarized in 
Table 2. Substituting these , 

TABLE 2 

Gk Equilibrium N on-Eq;uilibrium 

GI D/2.02 0 .2451D 
G2 0 -1.193 X 10-3D 
G, 0 0.2451 X 10-2D 
G, 0 -0.2463D 

values into the general expression 
given in Eq. (16), the general solu­
tion for the case of equilibrium is 
simply 

1 
Al = 2.02 D 

At = 2.~2 X 10-2D 
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A, = 2.~2 X 10-'D 

1 
A, = 2.02 D. (19) 

where the concentrations in the 
various levels are constant. Pro­
ceeding similarly for the case of non­
equilibrium, the general solution is, 
Al = D[0.245leb 1' + 1.193 X 10-3&.' + 

2.451 X 10- 3&.' + 0.2463&") 
A2 = D X 10-2 [0.2451&" - 0.1714&" -

0.2451&" + 0.1714&") 
As = D X 10-2 [0.2451&" + 0.1714&" -

0.2451&" - 0.1714&") 
A, = D[0.2451&l' - 1.193 X 1O-3eb" + 

• 2.451 X 10-3&.' - 0.2463&") 
(20) 

where: bl = 0, b2 = -1.306, b3 = 
-1.111, b4 = -6.737 X 10-3• 

To test the Mundness of the equi­
librium postulate of the activated 
complex theory of rate processes, it 
is required to show to what extent 
the equilibrium between initial levels 
is disturbed, as molecules from the 
activated state rearrange or decom­
pose into the products of the final 
state. This is best demonstrated by 
formulating an expression for the 
ratio of the actual rate to the equi­
librium rate for the process, and cal­
culating the variation of this ratio r 
with the amount of the substance 
that has reacted. The effect of 
transitions between levels of the 
initial state is taken into consider-

. ation in our expressions for the con­
centrations Al and A2 as given by 
Eq. (20). The actual velocity of the 
forward reaction is then 

Va = (kll + k .. )AI + (k28 + ku)A.. (21) 

To calculate the rate of reaction by 
the theory of absolute rates of reac­
tion, the basic assumption is made 
that the population of the leve1s in 
the initial state for the reacting 
species A is determined by the 
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Maxwell-Boltzmann distribution 
function. Referring to this velocity 
as the" equilibrium" rate Ve for the 
forward process, we have 

e- ·I/kT 
v, = (k'3 + k'4) (A, + A,) 2 + 

L: e- ' i / kT 

i=1 
e - ·,/kT 

(k'3 + k24) (A, + A,) 2' ' (22) 
L:e-.i / kT 

i=1 

where (AI + A 2) is the total concen­
tration of the substance A in the 
initial state. Hence, from Eqs .. (21) 
and (22) the ratio r of the actual 
rate to the equilibrium rate is 
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MaxweU-Boltzmann probability fac­
tors, we arrive at the expr(;ssion 

N, + N,e"l/kT 
r = ----~l~~~--e-.21'/kuT~ 

1 + e-'21/kT + 1 + e'21 / kT 

'i, [N, + N 2e'21/ kT ] (1 + e - · 21/ kT). (25) 

From the principle of detailed bal­
ance, we can substitute for e- ' 21

/
kT 

the ratio of rate constants kl 2/ k21 and 
obtain 

r = ! [N' + N, k21] (1 + k12
), (26) 

2 k'2 k21 

which on substituting our chosen 
values for kI2= 0.01 and k21= 1 re­

. duces to 

r = ~ _ (k'3 + k14)N, + (k23 + k'4)N, 
v, - e .I/kT . e- .,/kT ' 

(k'3 + k14) 2 + (k23 + k'4) --;2;----
(23) 

. L: e-'i/kT L: e- 'i/kT 
i= 1 i= 1 

where N I =Ar/AI+ A 2 and N 2= A 2/ 

A I + A2 are the mole fractions with 
reference to the initial state. 

Exp:cessions for the mole fractions 
NI and N2 as completely determined 
functions of time are readily obtain­
able from the general solution in Eq. 
(20). Thermodynamically, the ratio 
of rate constants is 

k23 + k'4 = e-'21/kT (24) 
k'3 + k14 ' 

r = 0.505 [N, + lOON,]. (27) 

Thus, an expression is available for . 
determining the correctness of the 
equilibrium theory of absolute rates 
of reaction. Using the analytical 
expr~ssions for the mole fractions 
NI and N2 as determined from the 
general solution in Eq. (20), the 
complete expression for the ratio of 
the actual rate of reaction to the 
equilibrium rate is given by 

[0.4902 - 0.1702e-I.306t - 0.2426e-I • I11, + 0.4177e-6.737 x 10-3,] 

r = 0.505 [0.2476 _ 5.212 X 10 4e 1.306' + 0.2480e 6.737 X 10 3'] (28) 

where · f21 = f2 - flo providing that · 
the transmission coefficients of the 
various rate constants are the same, 
which is equivalent to the assump­
tion made in solving the secular de­
terminant for the characteristic 
parameter b~ There, the hypothesis 
was made that the probability for 
the decomposition of the activated 
complex into any level of. the final 
state is the samc. Making use of the 
above relation and simplifying the 

We considered the case where 
the four-level system starts with 
molecules only in state one, all 
other states being empty. To test 
the validity or the equilibrium pos­
tulate of rate theory on the basis of 
our simple model, we calculate how 
the velocity ratio r deviates from 
its theoretical equilibrium value of 
vnity with the extent of reaction as 
determined in this specific case by 
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the concentration of substance A in 
level 1 of the initial state. Employ­
ing Eq. (28), the variation of the 
velocity ratio r with the concentra­
tion Al is plotted in Fig. 1. The 
calculations are summarized in 
Table 3. 

The magnitude of the variation 
of the function r is of extreme inter­
est, even though the calculations 
are based on an extremely simple 
model. The maximum deviation of 
approximately 20% in the velocity 
ratio at the beginning of the reaction 
represents the over-all error to be 
expected in the specific rate constant 
as determined by the theory of 
absolute rates of reaction. Inas­
much as the calculations were car­
ried out on a simple four-level sys­
tem under drastic conditions of non­
equilibrium, the results are most 
gratifying. In practice, the con­
ditions for rapid restoration of 
equilibrium concentrations in the 

activated state will be aided by the 
multitudinous number of energy 
levels in any reacting molecular 
system. 

The extent to which the specific 
rate constants between non-adjacent 
energy levels affect the equilibrium 
between the normal and activated 
state has also been determined (16). 
The same four-level system was 
considered with the exception that 
zero values were assigned to all 
specific rate constants between non­
adjacent levels, i. e., k13 = k31 = k14 = 
k41 = k24 = k42 = O. Similar assump­
tions were made in relating the rate 
constants between adjacent levels, 
and the same values were retained 
for these rate constants as were 
chosen in the complete solution of 
the four-level case considered above. 
For this simplified treatment of the 
four-level model, a maximum error 
of 8.2% in the over-all specific rate 
constant was found during the 
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TABLE 3 
VARIATION OF THE RATIO OF ACTUAL TO 
EQUILIBRIUM RATES WITH AMOUNT OF 

REACTION 

1 
2 
3 
4 
5 

10 
100 

1000 . 
00 

0.7967 
0.8858 
0.9134 
0.9222 
0.9251 
0.9276 
0 .9492. 
0.9944 
0.9998 

0.4908 
0.4885 
0.4865 
0.4848 
0.4832 
0.4754 
0.3707 
0.2480 
0.2451 

0.87 
1.33 
1.74 
2.08 
2.40 
3.98 

25.1 
49.9 
50.5 . 

* (A1)t_O = 0.4951D, where D is the 
total chosen concentration for the system. 

course of the reaction. This indi­
cates that possibly the chosen values 
for the. rate constants between 
non-adjacent levels ~ere taken 
slightly too large. 

It is now of interest to apply 
equilibrium reaction rate theory to 
the problem of spontaneous com­
bustion .. 

The Critical Temperatures for 
Combustion of Metals and Their 

Alloys * 
Generally speaking, combustion 

is a chemical reaction accompanied 
by heat and light. In a limited 
sense, the term has been adopted for 
the rapid union of substances with 

* Professor J . R . Lewis and Messrs. L. 
D. Gulbransen and W. M. Fassell of the 
Department of Metallurgy at the Univer­
sity of Utah pointed out the value of a 
theoretical discussion of the published 
data on ignition temperatures. 

RECORD OF CHEM;ICAL PROGRESS 

oxygen leading to their decomposi­
tion to form oxides, the process be­
ing accompanied by evolution of 
light and heat. Similar phenomena 
are observed when reactive elements 
such as fluorine or chlorine replace 
oxygen. All substances, whatever 
may be the medium for combustion, 
are characterized by a certain mini­
mum temperature for rapid reaction 
which leads to combustion. Ther­
mal · conductivity of the substance 
plays a determining role in establish­
ing this minimum temperature. 
For poor conductors such· as wood 
and plastics, the temperature at 
which they take fire is commonly 
referred to as the kindling tempera­
ture. With reference to combustion 
of good thermal conductors like 
metals and alloys, the term employed 
is the ignition temperature. . 

The existent data in the literature 
on combustion of metals and alloys 
are very meager. Recently, how­
ever, an , excellent study was made 
by Leontis and Rhines (18) on the 
rates of high-temperature oxidation 
of magnesium and magnesium alloys, 
in which they report the combustion 
of some of their samples. The pur­
pose of this section is to show how 
the problem of ignition teplpera­
tures of mEltals and alloys can be 
put on a quantitative basis. The 
above-reported data will be utilized 
in predicting the ignition tempera­
tures of magnesium and its alloys. 
By using the formulation given be­
low, it is possible to calculate values 
for the activation energies of high­
temperature corrosion of metals 
from a knowledge of their ignition 
temperatures. . 

Leontis and · Rhines have shown 
how the Theory of Absolute Rates of 
Reaction readily explains the ki­
netics of the high-temperature cor­
rosion of magnesium. ' Before pro-

• 
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ceeding to a discussion of ignition 
temperatures. it may be worth while 
to present briefly the theory of cor­
rosion of metals which exhibit a 
linear law of corrosion at high tem­
peratures. This will be applicable 
to all metals which on corrosion form 
a non-protective film. According 
to the Pilling and Bedworth (19) 
classification, this will include metals 
whose corrosion films are less volu­
minous than the base metal; i. e., 
vol. of film . 
1ft I < 1. As examples, we vo.o me a 

may cite the alkali and the alkaline 
earth metals. At lower temperatures, 
magnesium corrodes in accordance 
with the parabolic law, indicating 
protectivity; however, at tem­
peratures above 450 0 C., the film 
becomes non-protective, as indicated 
by the zero-order kinetics with 
respect to oxygen. 

The following reactions will ap­
ply to metals which obey the linear 
law of corrosion, 

0 4 ~ 0'" -+ products 

where C4 is the number of adsorbed 
gas molecules per sq. cm. of metal 
surface and C'" is the number of 
activated complexes per sq. cm. of 
surface. The rate is assumed to be 
determined by the number of acti­
vated complexes crossing the poten­
tial hump, so the number of mag': 
nesium atoms reacting per sq. cm. 
per sec. is given by 

v = G'" k[ . (29) 

On the basis of the assumed equi­
librium between the initial and acti­
vated states 

K"" = G'" =1"'/8 e-./kT (30) 
G4 . 14/s' • , 

wheref'" = partition function of the 
activated complex, fa = partition 
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function of adsorbed gas, E = sur­
face activation energy and S 
total area of surface, so that on 
substitution 

kT 1= 
v = G4 h 14 e-·/kT. (31) 

The concentration of adsorbed gas 
molecules can also be defined by 

G4 = oGs. 

where () is the fraction of surface 
covered and Cs is ihe number of 
adsorption sites or metal atoms per 
sq. cm. of surface. For relatively 
high pressures () is equal to unity, 
and since .the ratio f'" If a r-..J 1 our 
expression for the linear rate of cor­
rosion simplifies to 

kT 
v = Gs h e-·/kT. (32) 

The present formulation of the 
theory of ignition temperatures of 
metals is applicable to samples such 
as strips, ribbon, wire or coarse 
powders which are stable at ordinary 
temperatures and possess protective 
oxide films &t least of the order of 
20 A. The general principles will 
apply to fine powder samples, except 
that refinement of treatment is re­
quired to take into consideration 
factors such as the fine state of sub­
division, the higher surface areas 
with greater activity, i. e., lower 
energies of activation, and the 
method. of preparation of the 
sample. The latter point may very 
likely be of prime importance in ex­
plaining the combustion of pyro­
phoric iron in oxygen at tempera­
tures close to 01> C. as a result of the 
adsorbed layer of hydrogen. 

The ignition of metal samples will 
occur when the conduction of heat 
through the oxide film is inadequate 
for the removal of the heat produced 
at the metal-film interface as a re-
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suIt of corrosion. Radiation effects 
are of minor importance. Conse­
queritly, inadequate loss of heat 
through film conduction will in­
crease the temperature at the met­
al-film boundary, overheating the 
metal and increasing the rate of 
reaction. The progressive accelera­
tion of the rate of corrosion will re­
sult in the vaporization of the metal 
with subsequent ignition of the 
metal vapor. The heat loss per 
second through a unit area is equal . 
to the rate of conduction through a 
unit area of the film, whereas the 
heat produced per second per unit 
area is equal to the product of the 
velocity of surface corrosion and the 
heat of combustion. Setting up a 
heat-balance equation, we have 

(T - To) e.H (33) 
K d = v N ' 

where to a first approximation the 
shape of the sample is neglected by 
replacing the differential tempera­
ture gradient by a ratio. The sym­
bols are defined as 

K = the~D?al conduc-( cal.-cm. ) 
tIvlty °C. cm .2 sec. 

v = rate of corrosion (no. of metal 
atoms/ cm.2-sec.) 

T = t emperature in OK. at metal-film 
interface 

To = temperature in OK. at outer sur-
face of film 

d = t hickness of film in cm. 
e.H = heat of formation in kcal. / mole 
N = Avogadro's number. 

For ignition to occur, the heat bal­
ance will be destroyed and Eq. (33) 
is written as an inequality, 

(T - To) ' e.H (34) 
K d <v IV o 

The blanketing effect of the cor­
rosion film is clearly demonstrated 
in Fig. 7 of Leontis and Rhines' 
article (18). The linear rate of cor­
rosion of a Mg-Al alloy (1.78% AI) 
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is plotted at 5480 C. After ten 
hours the sample ignited onreaching 

. the critical film thickness whose 
blanketing effect destroyed the heat. 
balance. 

Another point has to be taken into 
consideration, namely, the ratio of 
the reaction surface (AM) to the 
outer area of the corrosion film (AF) 
where temperature equilibrium is 
maintained through gas collisions. 
Recently, Brown and Uhlig (20) 
have shown through measurement 
of ethane adsorption isotherms on 
chrome-plated nickel strips that 
the roughness factor ' (21) (i. e., 

true area ) f = t . of these sam-geome 1'1(' area 
pIes varied from 9.4 to 53. For 
·corrosion films of the order of sev­
eral microns, the microscopic irregu­
larity of the metal surface is lost in 
the formation of the voluminous 
porous film, so that we can expect 
the ratio AMI AF to have values 
closely corresponding to the rough­
ness factor values quoted above. 
Since most surfaces are quite hetero­
geneous in their activities for cor­
rosion, a certain amount of micro­
scopic pitting is expected, which 
would increase the above ratio. 

Limiting ourselves to the class of 
metals or alloys which obey the 
linear law of corrosion~ we can sub­
stitute expression (32) for the ve­
locity of corrosion into Eq. (34), thus: 

K (T - To) L. Cs kT e- E/ kT e.H AM . 
d- h N AF . 

(35) 

Since most metals are characterized 
by a cubic or hexagonal close­
packed system, Cs is approximately 
1 X 1015• The above expression can 
now be utilized to predict ignition 
temperatures (To) from measured 
values of the activation energies for 
corrosion (~) or to calculate activa-
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tion energies for the rate of corro­
sion at high temperatures of metals 
from experimental values of their 
ignition temperatures. For ease of 
calculation, Eq. (35) is transformed 
to read 

[ 
kdLlHF ] To ~ 1 - Os hKiV e- E / RT T, 

(36) 

where F = AMI AI" and our two 
variables are d and T. If we use the 
equality sign in (36) and plot To as 
ordinate against T as abscissa, we 
get the set of curves in Fig. 2 show­
ing maxima. These curves are 
labeled to indicate the thickness of 
the oxide layer considered. The 
lowest curve corresponds to an 
aluminum alloy, and the other three 
to pure magnesium. Clearly it is 
impossible to have To, the outside 
temperature, higher than the value 

given by the maximum without 
combustion occurring. Thus the 
maximum value on the curve for 
To is the ignition temperature. It 
should be possible, however, to have 
the temperature inside higher than 
corresponds to the ignition tempera­
ture if the inside is heated, say by an 
electric current, being careful always 
to keep the outside temperature be­
low the ignition temperature. 

Replacing the constants in Eq. 
(36) by the values given in Table 4 
for the Mg- Al alloy containing 
1. 78% AI gives 

To = [1 - 4.33 X 109 X 10 - D35G/ T ]T. (37) 

A word of explanation is required in 
reference to the quantities d, K and F. 
The thickness of the film (d) was cal­
culated from the total amount of 
corrosion measured at the point of 
ignition as given in reference (18) 
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TABLE 4 

Os = 1.1 X 1015 Mg atoms/cm.2 

k = 1.38 X 10-18 ergsrK. 
d = 1.35 X 10-2 cm. 
tllI = heat of formation, MgO 146 

kcal./mole 
F = 16 
h = 6.62 X 10-27 ergs~sec. 

= 2.8 X 10-4 (0 cal.-c~. ) 
K C. em. sec. 
N = 6.02 X 1023 atoms/mole 
E = 42.7 kcal./mole* 

* Leontis and Rhines, ref. (18). 

using the lower density value of 0.8 
of pressed MgO powder in view of 
the porous nature bf the film. Tpe 
value of 2.8 X 10- 4 for Kisanextrap­
olated value at 500° C. from ther­
mal conductivity data on 85% mag­
nesia over the temperature range · 
20-260° C. This value is used in 
place of the thermal conductivity 
of crystal MgO, for the porous oxide 
film with its adsorbed layer of oxy­
gen will have a smaller conductivity 
than crystal MgO, whose K' = 3.01 X 
10-3 at 15° C. The arbitrary value 
of 16 was chosen for F = AM/AF 
in order to obtain good agreement 
between the calculated and obseryed 
values of the ignition temperature 
for the Mg-(1.78%)Al alloy. This 
value for F was also found to be of 
the right magnitude to predict satis­
factory values for the ignition tem­
peratures of pure Mg of varying 
thicknesses of film. In calculating 
the ignition temperatures of pure 
magnesium the same values as given 
in Table 4 were utilized, with the 
exception of the activation energy E, 
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for which the measured value of 
50.5 kcal./inole was used [see refer­
ence, p. 20 (18) ]. ForpureMg, the 
equation is 
To = [1 - 2.00 X 101°dlO-ll ,ooo/TjT. (38) 

The calculated ignition tempera­
tures are given in Table 5. 

The difference between the ab­
scissa and ordinate on any curve 
gives the corresponding difference 
between the inside and outside tem­
peratures of the oxide layers. 

Flow of Concentrated Solutions 
of Large Molecules* 

If a molecule is so long that at 
equilibrium it has several possible 
equilibrium positions for each seg­
ment, -then when a shear stress is 
applied (22) as in viscous or plastic 
flow the stress will be relieved by 
the segments talung up new positions 
to release the strain. Suppose a 
liquid made up of unattached seg­
ments of the type which do the mov­
ing in flow would have the viscosity 
(23) 

Tls.g. = ~ ellF=/RT. (39) 

But suppose the segment j can only 
move if each of the other segments 

* The theoretical treatment of Flory's 
measurements [Po S. Flory, J. Am. Chem. 
Soc., 62, 1057 (1940) j for large molecules 
follows the method of Charles Fletcher and 
Henry Eyring presented at the A.C.S. 
Chicago meeting, 1946. See also the dis­
cussion by W. Kauzinann and H. Eyring, 
J. Am. Chem. Soc., 62, 3113 (1940). 

TABLE 5 

SUbstance 

Mg-C1.78%)Al 
Mg-C3.81 %)Al 
Mg 

Film Thickness 
(Cm.) 

l.35 X 10-2 

l.35 X 10- 2 

5 X 10- 2 

1 X 10- 1 

2 X 10-1 

Ignition Temperatures 
°C. calc. °C. obs. 

551 
460 
642 
618 
595 

548 

M.P., 
°C. 

",620 
",588 

651 
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of this molecule occupies particular 
ones of the possible positions. The 
ratio of the positions of the ith seg­
ment (i~ J) which allow the jth seg­
ment to move over the total number 
of positions of the ith segment is 
Pt-1• The viscosity of a liquid made 
up of these long molecules will then 
be 

(40) 

The values of Pt will no doubt vary 
with the nature of the solution. If a 
molecule is stretched out in the 
direction of flow, then a segment 
moving to extend the molecule fur­
ther in, this direction may well be 
resisted by the net number of seg­
ments already stretching in this 
direction. Consider the case of 
random distribution of the segments 
with respect to their projection in 
the direction of flow. We assume 
there is an equal chance of each seg­
ment having a positive or negative 
projection, and that a positive ex­
tension acts in such a way as to over­
come a negative one and make the 
product of the two factors unity. 
Remembering further the result of 
Kendall (24) and its theoretical 
interpretation that the viscosity of 
a mixture (6) is the geometrical 
mean on a volume basis of the vis­
cosity of the components, we have 
for the viscosity 

" = II Nh et.F,.IRT II p,IA'-2rl~ (
A, 

i V, r-l 

---- <Pi 
• (41) 

Here 'Pt is the volume fraction of 
molecules of chain length , nt and 

nt! . h f . f I 
( )! !2

n ' IS t e ractIOn 0 mo e-
nf-r r • 

cules with chain length n, which 
have a netextensionoflnt-2rl of the 
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segments in the direction of flow. 
For long molecules we can write with 
sufficient appr.oximation 

where x = (n, - 2r). 
This then gives: 

_ II (Nh t.F."J:.1RT :V2A'I" )<P' _ ,, - -e' p . -
i V, ' 

where 

II (Nhet.F' =IRTeaz,'")<P', (43) 
, V. . , 

aZ;'/t~ (~ lnp,)n, J/~ 

(~lnp, (~)'/t) 

= (~lnp')Z" /t. (44) 

In these equations Z is taken as 
the number of atoms in the chain 
and S the number of atoms in the 
segment. Reasonable values for Pf 
and S give the values for a found by 
Flory (25) and Eyring and Powell 
(26). 

From the above we see that prob­
ably the equilibrium theory of reac­
tion rates is seldom in appreciable 
error. A theory of the ignition tem­
perature of combustibles has been 
given, and finally we have given a 
framework for discussing the flow 
of large molecules which is capable 
of extension and wide application. 
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